Nombre:				Matrícula:	Carrera:
e-mail:					
Nota Ej. 1	Nota Ej. 2	Nota Ej. 3			Nota Final *

1) Integración

- 1. Deduzca (analíticamente) la fórmula de la regla simple de trapecios.
- 2. Calcule la integral por el método de Simpson 1/3 del siguiente conjunto de puntos.

X	0	0.25	0.5	0.75	1	1.25	1.5	1.75	2
y	36	15.625	8	5.625	4	1.625	0	3.625	20

- 3. Calcule la integral por el método de Simpson 1/3 del conjunto de puntos anterior con h = 0.5.
- 4. Utilice los resultados de los incisos anteriores para obtener una mejor aproximación en el calculo de la integral.
- 5. Explique como calcularía la integral del conjunto de puntos del inciso 2 utilizando el método de Romberg.

2) Dados los puntos de la tabla

X	-2	0	1
y	1	-1	2

1. Demuestre que la siguiente función T(x) cumple con las condiciones para ser un trazador cúbico para esos puntos

$$T(x) = \begin{cases} -1 + 2x + \frac{1}{2}x^2 - \frac{1}{2}x^3 & -2 \le x \le 0\\ -1 + 2x + \frac{1}{2}x^2 + \frac{1}{2}x^3 & 0 \le x \le 1 \end{cases}$$

- 2. Demuestre que T(x) **NO** es un trazador cúbico natural para esos puntos
- 3. Encuentre un polinomio P(x) de grado 2 que pase por todos los puntos usando Newton Regresivo. Verificarlo en los 3 puntos.
- 4. Evalúe T(x) y P(x) en el punto x = -1. Por que son diferentes los resultados?
- 5. En que se diferencian los trazadores cúbicos de los polinomios interpolantes?
- 6. Que son los polinomios aproximantes? Como se obtienen? Ventajas y desventajas?

3) Ecuaciones Diferenciales

Considerando la ecuación del movimiento

$$\frac{d^2x}{dt^2} = -x^2$$

con posición inicial x(0)=0 y velocidad inicial 10 m/s.

- 1. Determine posición y velocidad para t = 1 mediante el método de Euler mejorado con paso h = 0.5.
- 2. En qué se basan los métodos de RK? A qué orden de los métodos RK corresponde Euler Mejorado? Qué determina el orden?
- 3. Qué representa geométricamente el método Euler mejorado? En qué se diferencia con otros métodos RK?
- 4. Cuanto más precisa hubiese sido la solución si reduciría el intervalo a la mitad? Justifique
- 5. Podría el problema 3.1 ser resuelto por diferencias finitas? justifique

^{*} Observación. Para aprobar el parcial deben tener nota superior a 4 por lo menos dos ejercicios.